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Abstract—The binding affinity between drugs and proteins is
a substantial part of the drug discovery process. Graph neural
networks (GNNs) have shown great promise in graph-related
structure by learning the representations of graphs, which are
suitable for tasks such as binding affinity prediction. However,
most of the existing GNN architectures only pay attention to
the information flow on a single graph, while the interaction
between two graphs is unconcerned. In this paper, we propose
an attention-enhanced graph cross-convolution network (GCAT)
to explore binding affinity on pure 3D atomistic geometry. It
consists of two components: cross-convolution and self-attention
pooling. Specifically, cross-convolution performs an aggregate-
update mechanism to simulate the interaction between the protein
and the drug, then self-attention pooling is adopted to capture
global interactions and get graph-level representations. Extensive
experiments conducted on the PDBBind dataset demonstrate the
effectiveness of our GCAT.

Index Terms—protein-ligand affinity prediction, graph neural
network, cross convolution, self-attention, interaction modeling

I. INTRODUCTION

The research of protein-drug interaction has attracted at-
tention for many years due to its potential in aiding drug
discovery. Traditional methods of drug discovery are expensive
and time consuming [1], which drives us to explore efficient
models that can estimate the interaction strength of new
drug–target pairs based on previous drug–target experiments.

Inspired by the success of deep learning in many areas
such as computer vision and natural language processing,
many researchers have also explored the combination of deep
learning and biomedicine. There are three different represen-
tations of molecules, namely linear sequences (1D), chemical
bond graphs (2D) and the 3D positions of the component
atoms, which derived various exquisite models. Then for
protein-drug affinity prediction, current deep neural network
based methods can be summarized as a paradigm that uses
well-designed models, e.g. RNN [2], CNN [3, 4], to learn
feature representations and then predict affinity through a
fully connected network. Most of these approaches are still
emphasized on 1D or 2D representations rather than 3D
atomistic geometry [5, 6], and 1D representation of protein
can bring an over-fitting problem in training. As for how
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to make binary relationship predictions, these methods can
be divided into two categories according to the number of
branches, including one brunch way which combines protein
and small molecular into complex with the heuristic algorithm
for computation, e.g. [4]. More methods still use two branches,
that is to update the representation of proteins and small
molecules separately [3, 7]. These approaches can learn good
representations for downstream tasks indeed, yet most of these
approaches ignore the interactivity between the two entities,
which is also important and reasonable.

A growing number of Graph Neural Networks (GNNs)
have been proposed to update the feature on graphs with
aggregation and combination mechanism [8, 9]. GNNs have
shown superior performance by treating the molecule as a
chemical bond graph and performing message passing scheme
on it [10]. However, GNNs-based approach only focuses on
local receptive field, and it is easy to encounter over-smooth or
over-fitting problems [11]. A few works have been proposed
to use Transformer-based techniques to extract global features
on graphs [12, 13] which can be viewed as a variant of
the GAT [9] that applied attention mechanism on a single
graph. But there is little work exploring mutual attention
mechanisms between two graphs for tasks like protein-ligand
binding affinity prediction.

To address the aforementioned challenges, we propose
an end-to-end framework, GCAT, which stands for Graph
Cross convolution with Attention enhanced affinity prediction
neTwork, to simulate the interaction between the protein
and the molecular by introducing attention mechanism. We
summarized our contributions as follows:

• We propose an end-to-end GNN framework (GCAT) by
interaction modeling for protein-ligand binding affinity
prediction.

• We devise graph intro-convolution and attention enhanced
graph cross-convolution to simulate the interactivity be-
tween protein and small molecular, which is learned on
pure 3D atomistic geometry.

• We adopt a shared self-attentive pooling operation in-
stead of previous graph pooling approach to aggregate
information from the whole graph and obtain graph-level
embedding.



II. METHODOLOGY

A. Preliminaries

In our settings, for both protein graph and molecular graph,
node is an atom and edges are defined between all atoms
separated by less than 4.5Å as mentioned in atom3d. The
nearest neighbors of node i are defined as N (i). Detailed
symbols are shown in Table I.

TABLE I
SYMBOL NOTATIONS

Gp protein graph Hl
1i l-th layer embedding of node i in Gp

Gm molecular graph Hl
2j l-th layer embedding of node j in Gm

N (i) neighbors of node i hl
1 l-th layer embedding of Gp

A attention map hl
2 l-th layer embedding of Gm

W parameter matrix S correlation adjacency matrix

B. Graph Intro-convolution

The massage passing scheme is inspired by GCN [8], where
features are effectively aggregated from the adjacency nodes
and the node itself.

Hl
i = fupdate(H

l−1
i ,

1

||N(i)||
∑

j∈N(i)

fmsg(Hl−1
j )) (1)

Where Eq. (1) is the message passing network which
is denoted as graph intro-convolution. fmsg is the message
passing function. fupdate is the aggregating and updating
function which fuses origin features and updated features in
some ways, e.g. summing or concatenating. We perform graph
intro-convolution in both Gp and Gm, which can extract local
relations in Gp and Gm separately from the perspective of
unary relations.

C. Attention Enhanced Graph Cross-convolution

For two graph instances, we calculate the distances among
atoms of the two graphs by distance cutoff algorithm with
4.5Å threshold to identify the inter-graph correlation. That is,
if the distance between two atoms is less than 4.5Å, there is
a connection between them. We have S ∈ RNp×Nm which is
the correlation adjacency matrix representation of the edges
between Gp and Gm.

From another perspective, we could treat S as a predefined
static attention of Gp to Gm which would limit expressiv-
ity of model compared to dynamic attention. Therefore, we
could enhance S through a self-attention mechanism. For the
dynamic attention between two graphs, we use Scaled Dot-
Product Attention [14] calculated as:

Q = H1WQ,K = H2WK ,

A = softmax(
QKT

√
dk

)
(2)

Where H1/H2 is projected into query Q/key K by parameter
matrix WQ/WK . Attention map A captures the similarity
between queries and keys by computing the dot products of the

query with all keys, with the scaling factor 1√
dk

and softmax
function.

Then an integrated correlation adjacent matrix S′ can be
obtained by:

S′ = (1− λ)S + λA (3)

where λ is the balancing hyper-parameter to control the
strength of attention mechanism, which is a trade-off between
static and dynamic attention. Then we do cross-convolution
between two graphs with S′:

hl
1 =Wc1(hl−1

1 ||S
′hl−1

2 ),

hl
2 =Wc2(hl−1

2 ||S
′T hl−1

1 ),
(4)

where Wc1,Wc2 ∈ R(2×dl−1)×dl are learned weight matrices
and || denotes vector concatenation.

Eq. (4) is a single cross-graph update scheme from the per-
spective of graphs. We generalize from graph intro-convolution
to graph cross-convolution which features are aggregated from
nodes with similar features in the other graph in Eq. (5) from
the perspective of nodes.

Hl
1i = fupdate(Hl−1

1i ,
1

||N(i)||
∑

j∈N(i)

S′i,jfmsg(Hl−1
2j )) (5)

Here we apply dynamic self-attention on S instead of origin
heuristic S for cross-convolution in Eq. (3). This self-attention
enhanced S′ to obtain a better performance proved in later
ablation experiment.

D. Self-attentive READOUT Function

To encode the importance of different nodes into a unified
embedding, attention mechanism could be used to dynamically
adjust the node participation within a graph. Inspired by SEAL
[15], we further utilize a shared self-attentive READOUT
function to generate the graph-level embedding:

g = softmax(W2tanh(W1HT ))H, (6)

where W1 and W2 are two weight matrices and H is node
embedding. tanh activation function would introduce nonlin-
earity to this function. As final graph embedding, g is size
invariant because it does not depend on the number of nodes,
and is permutation invariant because the importance of each
node is learned regardless of the node sequence. Then after
a multilayer perceptron MLP , we can get a prediction of
affinity ŷ.

E. Loss Function

For GCAT, we introduce Huber loss Lr for the regression
task, which is more robust to outliers than Mean Square Error
loss. Specially, when λ = 1, S would not be utilized as
training information that is an unfair comparison. Thus, we
use additional Cross Entropy Loss La on GCAT to minimize
the gap between S and S′. Then we get the final loss function:

L = Lr + αLa, (7)

where α serves as a weight coefficient to balance the Lr with
La.
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Fig. 1. Network architecture of the proposed graph intro-convolution and attention enhanced cross-convolution approaches for affinity prediction to learn
interaction information flow between protein and small molecular, then learn global attention for protein-ligand binding affinity prediction. The graph intro-
convolution model, graph cross-convolution and cross-attention model are all learnable in an end-to-end fashion.

III. EXPERIMENTS

A. Dataset

We use PDBBind database refined set v.2019 [16], follow-
ing the split way of train/validation/test sets in atom3d. It sets a
30% sequence identity threshold to limit homologous proteins
appearing in both train and test sets rather than 90% identical
to several proteins in the training set and test set in CASF [17]
set, which prevents overfitting to specific protein families in
previous methods.

B. Evaluation Metrics and Compared Methods

We use Root Mean Square Error(RMSE), Pearson’s cor-
relation coefficient(RP ), and Spearman correlation(RS) as
metrics. To demonstrate the effectiveness of our approach, we
choose DeepDTA [3] (CNN based), DeepAffinity [2] (RNN-
CNN based), Pafnucy [4] (3D-CNN based) to compare with
our approach with the new split ways in atom3d.

C. Implementation Details

For proteins and small molecules, the input feature dimen-
sions are 18 and 43. For self-attention on cross-convolution,
we set attention hidden size as 128, head as 4 and the dropout
rate as 0.1. For the self-attention READOUT function, we set
hidden size as 256 and attention output size as 64. We use
Adam algorithm [18] as an optimizer, the learning rate is set
as 0.001 initially.

D. Results and Analysis

We first compare our proposed GCAT with baseline ap-
proaches. As shown in Table II, we can observe that GCAT
achieves the best performance, with 3.5% and 12.2% improve-
ment of RMSE over 3DCNN and ENN baseline respectively.

Among all methods, DeepAffinity [2] show relatively poor
performance due to the failure of considering the spatial
structure of proteins and small molecules. It indicates that
simply modeling the molecules into SMILES with protein
sequence information is not capable of predicting structure-
based protein-ligand binding affinity. By contrast, Pafnucy
achieves better results for taking atomic position coordinates

as input. However, Pafnucy ignores the interaction between
the protein and the molecular and can not take advantage
of long-range interaction features. Our proposed GCAT can
not only capture spatial structural information, but also handle
interactions in the complex through attention mechanism.

TABLE II
RESULTS OF PROTEIN-LIGAND AFFINITY PREDICTION ON

PDBBIND REFINED SET

Methods 30% identity

RMSE ↓ RP ↑ RS ↑

3DCNN [6] 1.416 0.550 0.553
ENN [6] 1.568 0.389 0.408

DeepAffinity [2] 1.893 0.415 0.426
DeepDTA [3] 1.565 0.573 0.574
Pafnucy [4] 1.489 0.539 0.537

Ours 1.382 0.585 0.592

a) Ablation Studies: To verify the effectiveness of factors
that influence the final performance, we compare GCAT with
its variants and the results are exhibited in Table III.

First of all, we compare the results of the proposed
method with the model with simple graph cross-convolution,
which have better performance in both GCN and GAT intro-
convolution backbone. Secondly, in the case of simple graph
global pooling, the performance of the model has decreased,
implying that global attention enhanced pooling method could
capture better graph-level representations. Then, we compare
the effects of GAT and GCN in the GCAT, i.e. GCAT-GAT
and GCAT-S, and find that using the attention mechanism
regardless of the tasks does not yield good results. Thirdly,
we use pure attention enhanced model GCAT-A, namely use
the learned attention with GAT backbone and self-attention
READOUT, which has an unsatisfactory performance because
attention mechanism lacks adequate supervised information.
For a fair comparison, we set L as cross-entropy loss function
and S as ground truth correlation matrix to minimize the gap
between attention map A and S. With this setting, GCAT-L
have got 2.89% improvement compared with GCAT-A.



TABLE III
ABLATION STUDIES OF OUR PROPOSAL.

method local feature global feature valid RMSE↓
intro cross

GCAT-NP GCN - global add pooling 2.021
GCAT-SP GCN S global add pooling 1.570

GCAT-GAT GAT S self-attention 1.475
GCAT-S GCN S self-attention 1.453
GCAT-A GCN A self-attention 1.462

GCAT-AL GCN A+La self-attention 1.411
GCAT GCN S′ self-attention 1.382
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Fig. 2. Parameter analysis of λ. With the increase of λ, more attention
information between Gp and Gm is available to our model and beneficial
for learning complex representation better, which leads to more performance
improvements when λ ≤ 0.4. After that, too much attention information will
introduce additional noise and degrade the performance.

b) Parametric Analysis.: As depicted in Fig. 2, we inves-
tigate the performance variation for GCAT of necessary hyper-
parameter by varying each parameter while keeping others
fixed as default settings.

E. Visualization

To verify the effectiveness of the attention mechanism, we
visualize the learned attention map A. Fig. 3 shows a heatmap
of GCAT learned attention scores between Gp and Gm.

(a) correlation matrix S (b) attention map A

Fig. 3. For entity of PDB ID 1c86, origin correlation matrix S (Fig. 3(a)) can
be considered as a static attention map: the ranking of attention coefficients is
global for all nodes between Gp and Gm. In contrast, GCAT(Fig. 3(b)) can
actually compute dynamic attention map A, where every query has a different
ranking of attention coefficients of the keys.

IV. CONCLUSION

In this paper, we proposed an attention enhanced graph
convolution based model, GCAT, to dynamically simulate the
interaction between the protein and the ligand by leveraging
the 3D atomistic geometry. In the future work, researchers can
explore more structural information than just as a basis for
constructing graphs with simple heuristic algorithms, which
could be better with dynamic learned threshold.
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